
?

/

NASA Contractor Report 189644

j' - /

Formal Mechanization of Device Interactions

with a Process Algebra

_"" 5A- ,_ CQ-I_9044) FORMAl_

MrCtJAD;IZATI_N tJff OkVICi-

I_:TFKACTIf_S WITH A PROCESS

(:.o_-in.j Milit.9ry Airplane

L,eve 1 o_;ment ) 59; e

_J

ALGEBRA

G3/eO

N93-12347

Unclas

0127231

E. Thomas Schubert

Karl Levitt

University of California

Davis, California

G. C. Cohen

Boeing Defense & Space Group

Seattle, Washington

NASA Contract NASI-18586

November 1992

NASA
National Aeronaullcs and

Space Administration

langley Research Center
Hampton, Virginia23665-5525





Preface

This document was generated in support of NASA contract NAS 1-18586, Design and Validation

of Digital Hight Control Systems Suitable for Fly-By-Wire Applications, Task Assignments 8.

Task 8 is associated with formal verification of embedded systems.

The principle emphasis of the work described in this report is to develop a methodology to

formally verify correct synchronization communication of devices in a composed hardware system.

Previous system integration efforts have focused on vertical integration of one layer on top of

another. This task examines "horizontal" integration of peer devices. To formally reason about

communication, we mechanize a process algebra in the HOL theorem-proving system. Using this

formalization we show how four types of device interactions can be represented and verified to

behave as specified. The report also describes the specification of a system consisting of an AVM-

1 microprocessor and a memory management unit, which have been verified in previous work. A

proof of correct communication is presented and the extensions to the system specification to add a

direct memory device are discussed.
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1.0 INTRODUCTION

Hardwaresystemsconsistof manycomposed,hardwaredevicesthat communicatewith

oneanother. This report describesa methodologyto formally verify the correctnessof the

synchronizationcommunicationwithin a hardwaresystem. The methodologyis basedon

the formalizationof a processalgebrawithin the HOL theorem-provingsystem.Usingthis

formalization,weshowhowfour typesof deviceinteractionscanbe representedand proven

to behaveasspecified.

The report also includesa specificationof a systemconsistingof an AVM-1 micro-

processorand a memory managementunit (MMU). These devices have been verified in

previous work (refs. 1 and 2). A correctness proof for the communication between the mi-

croprocessor and MMU is presented and an extended system specification, which includes

a direct memory access device (DMA), is discussed.

Previous system integration efforts have focused on vertical integration of one layer on

top of another. This work examines the "horizontal" integration of communicating devices.

Device communication may require only a single message or a series of messages to be passed

between two devices. The types of interactions can be loosely described as belonging to one

of the following categories: remote procedure call, process creation (fork), message passing,

or rendezvous. At a lower level, the information is passed over a bus using a hardware

protocol (e.g., 4-phase handshaking).

To demonstrate how system integration can be achieved, we will show how several

devices can be composed to form a system that uses the communication protocols described

above. For example, the CPU and MMU interact in a remote procedure call manner. The

CPU sends a memory request to the MMU and waits for the response. The CPU and

DMA interact in a manner similar to process creation followed by a rendezvous.

The descriptions of devices are frequently large and the proofs of these devices can

require significant amounts of CPU time. For example, the proof of a single microprocessor

microinstructioncan require 24 hours of CPU time. To reason about composed devices,

many detailsmust be abstractedaway. Further,the modeling and verificationofconcurrently

executing and communicating devicesisquite difficult.

PRECEDING PLGE BLA_K NCT F]!.r_ED



Process algebras a_d concurrency theories seek to provide formaJ models that aid in

our understanding of the behavior of such systems. The archetype for the process algebra

developed in this report, is the Calculus of Communicating Systems (CCS) (ref. 3). Despite

the seemingly simple syntactic definition of CCS, the semantics of its primitive operators are

carefully defined and allow complicated communication schemes to be accurately represented.

CCS provides only a single mechanism for processes to synchronize, but Milner asserts that

shared memory, pipes, channels, and procedural rendezvous can all be expressed in terms of

this simplest form of communication (ref. 4).

This report describes our approach to verifying composed hardware systems and presents

a mechanized process algebra for formally reasoning about device interactions. Section 2

discusses formal verification, the HOL theorem proving system, and related work. Section

3 describes process algebras and presents a description of the operational and transitional

semantics for CCS. The mechanization of the process algebra within the HOL theorem

proving system is presented in Section 4. Section 5 presents specification and verification

examples using the formalized process algebra, including a CPU-MMU composition proof.

The final section summarizes this work and describes future extensions.



2.0 BACKGROUND

2.1 HARDWARE VERIFICATION

Hardware verification requires that the design of a system is formally shown to satisfy its

specification through a mathematical proof. Using theorem-proving techniques, an expres-

sion describing the behavior of a device is proven to be equivalent in some sense to an

expression describing the implementation structure of the device. These expressions con-

cisely describe the behavior of devices in an unambiguous way. An additional benefit of

hardware verification is that the behavioral semantics of the hardware are clearly defined.

This provides an accurate basis for building correct software systems (ref. 5).

Verification is expensive and requires a substantial amount of time. While all develop-

ment efforts would benefit from the use of formal methods, presently only the verification of

life-critical and security properties merits the expense. Tools such as HOL are still under

development. The theory libraries are not yet sufficient for general use. Further, techniques

and methodologies to verify large systems are not available.

Circuits and devices are described in HOL using a mixture of functions and predicates.

Universally quantified variables are used to specify input and output device lines while

internal device lines are existentially quantified. The specifications are generally defined to

model a state transition system. A specification defines the state and environment at time

t+l, as a function of the state and environment at time t.

2.2 RELATED WORK

Newman proposes a unified hierarchy that accommodates all critical requirements (ref. 6).

Responsibility to satisfy each requirement can then be delegated to an appropriate layer

of the design. The layers remain interdependent; the more abstract layers relying on the

correctness of the lower levels. Formal proofs about the hardware-level discharge some of

the assumptions made by higher, software levels. Similarly, hardware-level proofs often

make assumptions about the behavior of the software which are discharged when the level

is composed (ref. 7).



Hardware verification efforts thus far have focused primarily on a microprocessor as

the base for computer systems (refs. 8, 9, I0 and 11). Perhaps the best known verifica-

tion effort is that of the VIPER microprocessor (refs. 9, 12 and 13). VIPER is the first

microprocessor intended for commercial distribution where a formal verification has been

attempted. However, these processors are quite limited. The processors verified have mod-

eled small instruction sets and, generally, have not included modern CPU features such as

pipelines, multipled functional units, and hardware interrupt support. Tamarack-3 (ref. 8)

and AVM-1 (ref. 14) do provide sufficient interrupt support to connect with an inter-

rupt controller. However, no system currently verified provides the memory management

functions necessary to support a secure operating system.

Previous efforts to verify systems have attempted to construct vertically verified sys-

tems with a microprocessor/memory as the system base. Joyce has verified a compiler level

whose target machine description is the specification of the verified Tamarack-3 micropro-

cessor (ref. 15). Computational Logic Inc. has verified a "stack" of interpreters where the

implementation of a level is the specification of the next lower level (ref. 5). The "stack"

consists of a compiler (Micro-Gypsy) an assembler and linking loader, and a microprocessor.

The operating system, KIT, is not part of the verified stack. The KIT project designed and

verified an operating system that supports multiple processes and asynchronous I/O. User

processes axe able to communicate only through message passing, which is implemented by

the kernel. This ensures that tasks are isolated from one another. However, the hardware

base has not been designed nor verified. Bevier assumes extensions to the FM8502 mi-

croprocessor (ref. 11) to provide interrupts, asynchronous I/O, memory management and

supervisor-mode instructions.

2.3 THE HOL THEOREM PROVER

HOL is a general theorem-proving system developed at the University of Cambridge (refs. 16

and 17) that is based on Church's theory of simple types, or higher-order logic (ref. 18).

Church developed higher-order logic as a foundation for mathematics, but it can be used

for describing and reasoning about computational systems of all kinds. Higher-order logic

is similar to the more familiar predicate logic, but allows quantification over predicates and

functions, not just variables, allowing more general systems to be described.



HOL grew out of Robin Milner's LCF theorem prover (ref. 19) and is similar to other

LCF progeny such as NUPRL (ref. 20). Because HOL is the theorem-proving environment

used in the body of this work, we will describe it in more detail.

HOL's proof style can be tailored to the individual user, but most users find it conve-

nient to work in a goal-directed fashion. HOL is a tactic-based theorem prover. A tactic

breaks a goal into one or more subgoals and provides a justification for the goal reduction

in the form of an inference rule. Tactics perform tasks such as induction, rewriting, and

case analysis. At the same time, HOL allows forward inference and many proofs are a

combination of both forward and backward proof styles. Any theorem-proving strategy a

user employs in connection with HOL is checked for soundness, eliminating the possibility

of incorrect proofs.

HOL provides a metalanguage, ML, for programming and extending the theorem

prover. Using ML, tactics can be put together to form more powerful tactics, new tac-

tics can be written, and theorems can be combined into new theories for later use. The

metalanguage makes the HOL verification system extremely flexible.

In HOL all proofs, even tactic-based proofs, are eventually reduced to the application

of inference rules. Most nontrivial proofs require large numbers of inferences. Proofs of

large devices such as microprocessors can take many millions of inference steps. In a proof

containing millions of steps, what kind of confidence do we have that the proof is correct? One

of the most important features of HOL is that it is secure, meaning that new theorems can

only be created in a controlled manner. HOL is based on five primitive axioms and eight

primitive inference rules. All high-level inference rules and tactics do their work through

some combination of the primitive inference rules. Because the entire proof can be reduced

to one using only eight primitive inference rules and five primitive axioms, an independent

proof-checking program could check the proof syntactically.

2.3.1 THE LANGUAGE.

The object language of HOL is described in this section. We will discuss HOL's terms and

types.



Terms. All HOL expressions are made up of terms. There are four kinds of terms in

HOL: variables, constants, function applications, and abstr_tions (lambda expressions).

Variables and constants are denoted by any sequence of letters, digits, underlines, and primes,

starting with a letter. Constants are distinguished in the logic; any identifier that is not a

distinguished constant is taken to be a variable. Constants and variables can have any finite

arity, not just 0, and, thus, can represent functions as well.

Function application is denoted by juxtaposition, resulting in a prefix syntax. Thus, a

term of the form "tl t2" is an application of the operator tl to the operand 1;2. The term's

value is the result of applying tl to t2.

An abstraction denotes afunction and has the form "A x. t". An abstraction "A x. t"

has two parts: the bound variable x and the body of the abstraction t. It represents a

function, f, such that "f(x) - 1;". For example, "A y. 2*y" denotes a function on numbers

that doubles its argument.

Constants can belong to two special syntactic classes. Constants of arity 2 can be

declared to be infix. Infix operators are written "rand1 op rand2" instead of in the usual

prefix form: "op rand1 raad2 °'. Table 2.3-1 shows several of HOL's built-in infix operators.

Table 2.8-1: HOL

Operator

8

D

A

V

Application

tl = t2

tl,t2

tl h t2

tl V t2

tl _ t2

Infix Operators

Meaning

tl equals t2

the pair tl and t2

tl and t2

tl or t2

tl implies t2

Constants can also belong to another special class called binders. A familiar example

of a binder is V. If c is a binder, then the term "c x.t" (where x is a variable) is written as

shorthand for the term "c(A x. t)". Table 2.3-2 shows several of HOL's built-in binders.

In addition to the infix constants and binders, HOL has a conditional statement that

is written a -, b I ¢, meaning "if a, then b, else c."



Binder

V

3

g

Table ',

Application

Vx.t

3x.t

gx. t

.3.2: HOL Binders

Meaning

for all x, t

there exists an x such that t

choose an x such that t is true

Types. HOL is strongly typed to avoid Russell's paradox and others like it. Russell's

paradox occurs in a higher-order logic when one can define a predicate that leads to a

contradiction. Specifically, suppose that we define P as P(x) m -_x(x) where -_ denotes

negation. P is true when its argument applied to itself is false. Applying P to itself leads

to a contradiction since P(P) _, -_P(P) (i.e. , true = false). This kind of paradox can be

prevented by typing since, in a typed system, the type of P would never allow it to be applied

to itself.

Every term in HOL is typed according to the following recursive rules:

a. Each constant or variable has a fixed type.

b. If x has type a and t has type fl, the abstraction A x. t has the type (a --* fl).

c. If t has the type (a --* fl) and u has the type a, the application t u has the type/_.

Types in HOL are built from type variables and type operators. Type variables are

denoted by a sequence of asterisks (*) followed by a (possibly empty) sequence of letters and

digits. Thus, *, ***, and *ab2 are all valid type variables. All type variables are universally

quantified implicitly, yielding type-polymorphic expressions.

Type operators construct new types from existing types. Each type operator has a

name (denoted by a sequence of letters and digits beginning with a letter) and an arity. If

al,..., a, are types and op is a type operator of arity n, the (al,..., a_)op is a type. Note

that type operators are postfix while normal function application is prefix or infix. A type

operator of arity 0 is a type constant.

HOL has several built-in types, which are listed in Table 2.3-3. The type operators

bool, ind, and fun are primitive. HOL has a special syntax that allows (*,**)prod to be

written as (* # **), (,,**)sum to be written as (* ÷ **), and (*,**)fun to be written



(* -> **).

Table

Operator

boo1

ind

nun

(*)list

(*,**)prod

(*,**)suN

(*,**)fun

2.3-3: HOL

ArJty

0

0

0

1

2

2

2
]

TVpe Operators

Meaning

booleans

individuals

natural numbers

lists of type *

products of * and **

coproducts of * and **

functions from * to **

2.3.2 THE PROOF SYSTEM.

HOL is not an automated theorem prover but is more than simply a proof checker, falling

somewhere between these two extremes. HOL has several features that contribute to its use

as a verification environment:

a.

b,

c°

Several built-in theories, including booleans, individuals, numbers, products, sums,

lists, and trees. These theories contain the five axioms that form the basis of higher-

order logic as well as a large number of theorems that follow from them.

Rules of inference for higher-order logic. These rules contain not only the eight basic

rules of inference from higher-order logic, but also a large body of derived inference

rules that allow proofs to proceed using larger steps. The HOL system has rules that

implement the standard introduction and elimination rules for Predicate Calculus as

well as specialized rules for rewriting terms.

A collection of tactics. Examples of tactics include: REWILITE_TACwhich rewrites a goal

according to some previously proven theorem or definition; GEN_TA¢ which removes

unnecessary universally quantified variables from the front of terms; and EQ_TACwhich

replaces a goal of the form P ¢=, Q with two subgoals, P ===_ Q and Q ==_ P

d. A proof management system that keeps track of the state of an interactive proof session.



e. A metalanguage, ML, for programming and extending the theorem prover. Using the

metalanguage, tactics can be put together to form more powerful tactics, new tactics

can be written, and theorems can be aggregated to form new theories for later use.

The metalanguage makes the verification system extremely flexible.

2.4 INTERPRETERS

The interpreter model, as defined in (ref. 14), can be used to describe state-transition

systems. Interpreters can be differentiated from other models by their monolithic treatment

of state and their flat control structure. The interpreter selects one of a fixed set of actions

based upon the current state and returns a new state. The model incorporates four parts:

• A representation of the state S.

• A set of state transition functions defining the denotational semantics for each inter-

preter action (instruction) Ji : S i × Env ---, Sj.

• A next state function that selects an appropriate state transition function given the

current state K : SI _ Ji.

• A function I, relating the state at time t + 1 to the state and environment at time t

using K and J.

I[s,e] = s(t + 1)= t))(, t)(e t)

Correctness is a relation between a specification and implementing interpreter such that:

I,,m,,[s,,,, e,,,]=* I.p_[s,,of,e:f]

where f is a temporal abstraction function relating the differing specification and implemen-

tation time granularities. The state space s,, and environment e, are abstractions of the

implementing state space s,_ and environment era, respectively.

Devices that provide a set of instructions such as a CPU or FPU can easily be modeled

as interpreters. Other devices, such as a programmable interrupt controller (PIC) or DMA,



can also be modeled as interpreters with instructions. For example, we can model a PIC as

an interpreter with instructions to:

• update the state due to an environment request.

• update a local register.

• provide status information.

• initiate communication with CPU.

A memory management unit can also be modeled as an interpreter with the following in-

structions.

• update a local register.

• provide status information.

• translate/validate memory requests.

2.4.1 COMBINING INTERPRETERS

When composing interpreters, we must show that devices synchronize and share information

appropriately. The combined system aggregates the functions of the individual components

and shields the communication between the devices. The interaction between interpreters can

be made explicit by extending the interpreter model to more fully utilize environments. The

selection of a transition function in the current interpreter model is dependent on both the

state and (input) environment; however, an output environment is not present. By defining

an output environment, it becomes more clear what is being shared and what is private

state. Devices then communicate through environments where the output environment of

one device is the input environment of another device.

The set of state transition functions defining the denotational semantics for each inter-

preter action is now defined as:

Ji : Six Envia ---# Sjx Envout.

The next-state function is also more clearly defined as:

K : SixEnvin --* Ji.

10



As an example, consider the interrupt behavior of a system. The top-level system

interpreter would respond to an environment of external world inputs while manipulating a

state consisting of the system memory and the set of device registers (CPU, FPU, PIC,

MMU, DMA, etc.).

The system implementation may rely on the interrupt function being provided by several

interacting devices, including a programmable interrupt controller (PIC) and a CPU. The

CPU input environment would include an interrupt request line, which the PIC will assert

as part of its output environment when an external request (system environment) is pending.

The next-state function might be defined as below, where external interrupts (environ-

ment variables) cause state changes only when interrupts are enabled (state variable). This

function definition states that when an interrupt is serviced, the program counter (pc) is

pushed onto a stack and the new pc is assigned a value based on the current state and which

external interrupt is requesting service.

The variables intEnabled and pc are part of the CPU state and the variable PICRe 9

is part of the PIC state. The variable interrupt is part of the CPU's input environment

and the PIC's output environment.

(interrupt t A intEnabledt)

PushPC state t

A pc(t + 1) = IVEC (starer)(whichlnt(t + 1))

A intEnabled(t + 1) = F

I Executelnstruction(state t)

A

interrupt(t + 1) = (externallnt t V internallnt t)

A

whiehlnt(t + 1) = PICPriority(PICReg t)

We may also wish to guarantee certain properties about the system, such as if an external

I/O request is generated in the environment, eventually it will be serviced. This kind of

11



requirement may be part of an abstract model of fault tolerance that the interpreter must

be shown to satisfy.

riot. extlOInt io (envt) _ 3t'.t < t' A

interrupt t _ A whichlnt t _ = io

12



3.0 PROCESS ALGEBRAS

Process algebra is the study of concurrent communicating processes in an algebraic

framework (ref. 21). Processes, in this context, are mathematical objects (like groups) that

obey a set of axioms. CCS is recognized as having establishing the field. CSP is also a

well-known example of a process algebra (ref. 22).

Composed systems are made up of a network of devices with a unity of purpose. The

behavior of the system is, in some sense, its capability to communicate. From the large body

of work on concurrency theory, process algebra has emerged as a framework to study the

interaction of communicating, concurrent processes. While processes are generally thought

of as executing programs, machines or devices can also be studied under this framework.

The behavior of each device can be described as a process and the interaction of the devices

studied as a process algebra. Hennessy defines processes as: " computational or algorithmic

entities that when executed, affect and are affected by their environment. The environment

may be other users, or other computational entities or a combination of both" (ref. 23).

Processes are expressed as terms in an algebra formed by an equational specification.

The specification consists of a signature and a set of equations (E,E). The signature is a

collection of formal function symbols or combinators that define the syntax of terms. The

equations are axioms that help define the semantics of the objects. A number of other

definitions are important for discussing the semantics:

• A E-algebra is an interpretation for the combinators over a set called the carrier. For

example, given a signature with the combinators {Zero, Succ, Pred, Plus} , a E-algebra

can be constructed with the carrier being the natural numbers (< N, EN >).

• A term-algebra is an interpretation constructed from the combinators when the carrier

is the set of terms constructed using the combinators.

• A E-homomorphism is a function between carriers of E-algebras that preserves the

structure imposed by viewing them as E-algebras.

• A E-algebra, I, is initial for a class of E-algebras if for each class member, J, there is

exactly one E-homomorphism from I to J.

13



• Given a E-algebra and an equational specification (E,E), the E-algebra is said to satisfy

E if the equations are true for the carrier and interpretation. Or inversely, E holds for

the T-algebra . The T-algebra is also called a model for E.

3.1 CALCULUS OF COMMUNICATING SYSTEMS

This section will briefly describe CCS without probing or examining the semantics involved

in any detail. The semantic issues will be discussed in section 3.2, which describes process

algebras in general.

CCS was designed to model communication and concurrency in complex systems (ref. 3).

Systems are composed of several parts acting independently of each other, but communi-

cating with one another to achieve a mutual goal. All elements of the system are modeled

as agents. The medium used to transmit information between a sender and receiver is also

modeled as an agent. An agent's behavior is described by actions, which may be communica-

tions with other agents or independent concurrent actions. Milner suggests that independent

actions can also be modeled as (internal) communication.

The calculus provides five primitives to construct expressions describing agents' behav-

ior: Prefix, Summation, Composition, Restriction and Relabelling. In the pure

calculus, agents do not transmit data values, but synchronize through indivisible actions

where a synchronization signal is simultaneously sent by one party and received by an-

other. The summation 'operator' can be applied to duplicate the effect of passing data

values between agents. By communicating only through pure synchronizations, the calculus

may ignore value variables. Restriction and relabelling operators have the tightest binding

followed by prefix, composition, and summation.

An agent identifies the current state of an entity. Transitions from state to state are

accomplished by an action. Actions are denoted by labels and describe either synchronization

or internal transitions. Labels are taken from an infinite set of names. For two components

to synchronize, they must share the same port name. The notation distinguishes send and

receive synchronization labels by placing a bar over the name of send labels (e.g., _). Internal

transitions are labeled by the reserved label r, which has no complement.

For example, in the figure below, agent A has an input synchronization port (in) and,

14



an output synchronization port (b-if{).

The behavior of the agent might be defined as follows:

A =de! _.A'

A' =de/ v.A

These agents describe a semaphore and show the use of the Prefix ( "." ) operator.

Agent A waits to synchronize with some other agent and, upon completion, behaves as A'.

Composition hooks together two independent agents and is denoted with a vertical

bar. For example, consider the following agents:

The composite agent (A I B) may be connected as follows:

We can also write A =,_e! a.A' as A --% A'. The transitional semantics of the language

(described below) allow us to infer the following:

a. From A 2* A', we infer A I B 2, A'I B.

15



b. From A' _3, A, we infer A' I B -L A I B (this represents communication between A'

and some agent other than B).

c. Since A' -L A and B 2, B' we can infer A' I B ._L,A [ B' (internal transitions).

d. From B' Z B, we infer A IB' Z A lB.

By imposing Restriction on the composition of A and B (i.e., A [ B\c), the action c is no

longer externally available. This implies item (2) would then be excluded.

In the above examples, each agent was defined as conducting only one action. The

Summation operator (+) is used to define agents that may make one of several (possibly

infinite) transitions. For example, an agent similar to A could be defined to either accept

input signals or send output signals as follows:

C =d¢! a.C + -6.C

Relabelling allows agent definitions to be reused. Using relabelling we could use the

same agent definition for A and B above. Given a relabelling function f, A[f] denotes a

copy of agent A with appropriately modified action names.

3.1.1 TRANSITIONAL SEMANTICS

CCS provides several rules describing the semantics of the expression constructors:

Act

Sumj

Coal

a.E-_ E

E.i-_ E_ (j E I)

E -h E'

EIF-_ E'IF
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Com2

Com3

aes

Rel

Con

F -5, F'

EJF_EIF'

E -_ E' and F -_ F'

EIF-_ E'IF'

E 2+ E '

E\L .2+ E'\L (a,a _ L)

E -Z, E'

E[f] :_) E'[f]

p 2+ p,

A --%P' (A =d,! P)

3.2 SEMANTICS

Our primary concern regarding semantics pertains to the meaning of agent equivalence.

Certainly different 2-algebras will identify different machines and the sequence of actions

a machine may perform. We want the equation axioms to restrict the set of models that

satisfy the equational specification to those models that are real processes (devices).

As processes are inherently non-deterministic, the behavior of a process could be char-

acterized by a set of action sequences (traces). One of the properties of a CCS term is to

abbreviate this set. CCS terms also have an important dynamic aspect. Communication

links and capabilities as well as the number of components, can all change as the system

evolves.

For example, the agent a.(b+ c) can produce the trace set ((a,b), (a,c) }. Likewise,

the agent a.b + a.c produces the same trace 1. The question then arises, are these agents the

equivalent?

l For purposes of reducing syntax, we will frequently write a.b as simply ab.
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a(b+ c) - ab + ac (1)

Using a trace semantic definition of equivalence, the two agents are equal. However,

this equivalence does not hold for all process algebras.

Of the five combinators, the summation function is the most open to different semantic

interpretations: the restrict and relabel operators are clearly more of a convenience than

a necessity; the composition operator can be defined in terms of the summation operator

(see section 4.2 ); and the primitive nature of the prefix combinator provides little freedom

for varying its meaning. To define the meaning of the composition operator, however, the

timing of choices a system makes must be carefully considered. The agents in equation (1)

illustrate this idea.

a

b c b c

a(b+c) ab + ac

Figure 3.2-I: Example of Process Algebra Semantic Interpretations

The agent ab + ac represents an agent that makes a choice to behave as the agent ab

or the agent ac. If a specification equation were to declare that the prefix operator left-

distributes over the summation operator, then the two agents would be equivalent. When

this left-distribution axiom is not present, the agent a(b+ c) postpones the choice of a second

action until after the action a occurs. Depending on when the choice between two traces

is made, the behavior of two agents of can be quite different as viewed from an observer

agent. In Figure 3.2-1 this difference in the moment of choice is exhibited by the difference

in branching structure.

Adding the axiom prefix left-distributes over summation would allow many unrealistic

process models to satisfy the equational specification, so it will not be present in the set of

equations.
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The notion of equivalence we will use is that of bisimulation (ref. 3). Two agents are

equivalent by bisimulation, if an outside observer cannot distinguish between them. More

formally, P =bisimulate Q :

a. If P -% P' then for some Q', Q -% Q' and P' =bi,i,_t_t_ Q'.

b. If Q -% Q' then for some P', P -% P' and P' =biolm,,t,_t, Q'.

Proofs of equivalence are done by constructing bisimulations. However, state explosion

can quickly occur, making these proofs difficult. The solution is to use equational reasoning.

This requires a relation where equivalence is a congruence (reflexive, symmetric, and tran-

sitive). Congruence on CCS agents is an equivalence relation satisfying the following set of

properties:

if A =,q_i_ A' and B =,v_,i_ B' then

a. A+B=,q_ioB+A

b. AIB =,q_i_ BIA

c. a.m =_quiv a.m'

d. A\l =,q_i_ A'\l

e. a[f] =.q.,_ A'[/]

f. a = E[A] ^ B = F[B] ^ VP E[P] = F[P] _ m =_q_i_B

The basic axioms of CCS are presented in Figure 3.2-2. Most variations of CCS in-

corporate these laws and differ in what equational laws regarding the internal action are

included. A brief summary of six such process algebra variations is presented in (ref. 24).

3.2.1 INTERNAL ACTIONS

The internal action r, also requires special attention to define when an agent chooses to take

an internal action. As the semantics of r vary, so does the meaning of equivalence relation

and, thus, what interpretation models satisfy the process algebra defined. The basic issue is
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Figure 3._-& Basic Axioms of CCS

summation (monoid) laws

P+Q =Q+P

P+ (Q + R) = (P+ Q)+ R

P+P=P

P+O=P

restriction laws

.f 0 if___,aEL(a.Q)\L "ta.Q\ L "otherwiJ*

(Q + R)\L = QkL + R\L

O\L = 0

composition laws

PIQ = Q[ P

PI(QIR) = (PIQ)IR

P]O = P

relabeUing laws

(a.Q)[f] = f(a).Q[jq

(Q + R)[f] = Q[f] + R[f]

o[1]= o

The Expansion Law

a.P[_.Q = a(P[_.Q) + _(a.P[Q) + r(P[Q) if(a=3)0 otherwise

how observable are internal actions to an outside observer. For example, we must consider

whether the agent a.P + 7".b.Q is equivalent to the agent a.P + b.Q (Figure 3.2-3 displays

the branching structure of these agents).

A strict interpretation of these agents (using strong equivalence) would suggest the

agents are not equivalent. The agent a.P + b.Q is able to communicate with its environment

through actions a or b. The agent a.P + r.b.Q, however, will either I) only communicate

through action a, or 2) only communicate through action b. Which behavior is observed

depends on whether or not the internal action is taken.

A hierarchy of equivalences is presented in the Figure 3.2-4. The weakest equivalence is

the trace equivalence definition where two processes are equal if the set of all possible traces

that the two may execute is the same. Strong equivalence requires strict equality in what

internal actions do.
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a 7"

I
b

I
P Q

a.P+b.Q

a b

P Q

Figure 3.2-3: Internal Action Decision Point

The arrows in Figure 3.2-4 are meant to indicate that if two processes are strongly

equivalent, then they are observationally congruent, Likewise, if two processes are observa-

tionally congruent, then they are observationally equivalent. Observational equivalence is a

weaker form of bisimulation. Observational equivalence equates the agents 7".B and B while

observational congruence makes a distinction between them. The 7" laws for observational

congruence that we will use are:

a. a.r.P =,quiv a.P

b. P + 7".P =,q_i,, 7".P

c. a( P + 7".Q) + a.Q =,q,,i,, a( P + 7".Q)
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Strong Equivalence

(bisimulation)

Observational Congruence

0 bservat ional Equivalence

(weak bisimulation)

Trace Semantics

Figure 3._-4: Process Algebra Equivalence Relations
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4.0 MECHANIZATION OF THE PROCESS ALGEBRA

This section will describe preliminary work to represent CCS in HOL. There has been

significant recent interest in mechanizing process algebras in HOL (refs. 25, 26 and 27).

The development described here takes a purely definitional approach. This representation

has allowed us to directly prove several of the CCS semantic laws. We are also interested

in a vehicle to investigate modifications to the CCS logic to handle data passing as well as

synchronization.

To develop the process algebra in the HOL logic, we take advantage of several type

definition mechanisms provided by the logic. Using these facilities we define an initial al-

gebra (ref. 28) for agents, which are constructed from sequences of actions. The purpose

of types in higher-order logic is to prevent the inconsistency that higher-order variables can

induce. The recursive type definition facility (ref. 29) automates the process of defining

new data types in terms of already existing types. Both constants of the new type and type

operators can be defined. Type operators are constructor functions, used to build compound

members of new type from the type constants. The properties of these new types are then

derived by formal proof. This guarantees that the new type does not introduce inconsistency

into the logic. Additional recursive operators can be defined to operate on the concrete data

representation of the type.

As shown in Figure 4.0-5 from Melham's paper (ref. 29), the new type is defined by

adding an axiom to the logic that asserts that the new type is isomorphic to an appropriate

subset of an existing type. The predicate P : ty _ bool defines some useful subset of the

type ty.

Figure 4.0-5: New Type Isomorphism
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4.1 ACTIONS

Using the recursive type definition facility, actions are defined to be either internal or external

transitions. The internal action represents the r action of CCS. External transitions require

a label, which consists of a name (string) and boolean value, that denotes whether the action

is a send or receive synchronization operation.

new_type.abbrev( 'name', ": string") ; ;

new_type.abbrev( ' label', ":bool#name") ; ;

let ACTION = define_type 'action'

'action = INTERNAL I EXTERNAL label';;

Several auxiliary recursive function definitions are defined for the action data type. An

induction theorem for the type is provided and a simple theorem is proved showing that all

actions must be either internal or external and not both.

Fde! (Is_Internal_Act: INTERNAL s T)
_de! (Is_External_Act IWTERI[AL = F)

F_,I V 1. LBL(EXTEItNEL i) = SID 1

bd,/ ¥ i. TYP(EITERIAL i) = FST 1

A (¥ 1. Is_Interna1_Act(EXTEltIkL i) = F)
A (V 1. Is_Extlrnal_Act(EITEltWlL i) = T)

ACTIOm-IJDUCT =

F V P. P IITEI_AL A (V p. P(EXTEI_|AL p)) _ (V a. P a)

action_ca|em ffi
F V a. (Is_Ex_ernal_Act a

(Is_External_Act a

V Is_Internal_Act a) A
A Is_In$ernal_Act a)

IS_COMPL_ACT =
F V a b. IS_COMPL_ACT a b ffi(LBL a = LBL b) A (TYP a = _ TYP b)

4.2 AGENTS

The type representation covers the syntax of the concrete data type. Note that a term

algebra is also formed. It would seem good practice for the representation definition of any

type to minimize the number of type operators. This is certainly true if the semantics of

some operators can be defined in terms of others.

For determining the equivalence of two agents, we would like to define all agents in a

normal form with agent terms consisting of only the prefix and summation operators.
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To describe processes that execute in parallel, we adapt a method described in (ref. 21).

This technique allows composed, concurrently executing agent expressions to be converted

to an equivalent agent expressed only with the prefix and summation operators. We define

three mutually recursive functions to replace the composition type constructor:

a. A communication operator, COMM, which declares that two agents will communicate

if they have complementary, enabled actions.

b. A left-merge operator, LMERGE, which creates a new agent from two agents, such

that the new agent must first behave as though only the left agent (first argument)

were present and followed by an agent constructed by the composition of the resulting

left agent and original right agent.

c. A compose ("merge" in the literature), COMPOSE, which creates an arbitrary inter-

leaving of the two agents (through use of the summation type constructor).

The functions relate through the following laws. We will use the symbol "lr', for the

COMPOSE operator, the symbol "l" for the COMM operator and "L" for the left-merge

operation.

a. Given P = a.P'andQ = b.Q'

elQ=(a= COMPLEMENTb) _ r.(P'llQ')elseO

b. x II y = (xLy) + (yLx) + (x l Y)

c. aLx = a.x

d... Ly = IIY)

e. (x + y)Lz = (xLz) + (yLz)

f. az I bx - (a I b).(x II Y)

g. (x+y) lz=(xlz)+(ylz)

h. xl(y+z)=(xly)+(zlz)

The functions COMPOSE and LMERGE, are mutually recursive. Regrettably," HOL

does not provide a mechanism for defining mutually recursive functions. To handle this prob-
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lem, we include two auxiliary compound type operators in the type definition and axiomatize

their semantic meaning (see the HOL code below).

Using the CCS restrict operator, a CCS agent can be constrained so that (a set of)

specified actions cannot form links with other agents. The restrict operator in our grammer

restricts an agent for a single action. This does not result in a significant loss of function;

for example, the agent:

(a.A+b.B)\{a,c}

can be defined by:

((a.A+b.B)\a)\c

let AGEWT = define_¢ypo 'agent'
'agent = IIACTIVE

J PREFIX action agent;
[ SUMM agent agent

I COXPOSE agent agent
[ LMERGE agent; agent
J RESTRICT label agent '; ;

io¢ AGEMT_IIDUCT = savo_th_('AGEMT_INDUCT', prove_induction_Clua AGEWT);;

let AGEIT_CISES z prove_cues_thnAGEIT_I|DUCT;;

le¢ AGENT_CONSTRUCTORS_DISTINCT = prove_constructors_distinct(AGEnT);;
let £GEIT_one_one = prove_constructors_one_one £GE_T;;

COMM_DEF_AX =
_VABab.

COMM (PREFIX a A) (PREFIX b B) =

IS_COMPL_ACT a b -_ PREFIX INTER]AL (COMPOSE A B) [ IWACTIVE

COMM_DIST_£X =
v I B c. (coMx (SUMMA 8) C - S_M (CO_ I C) (COMM S C)) ^

(COMH, (SUMMs c) = s_. (COMMA B) (CO_ * C))
COMPOSE_£X =

V A B. COMPOSE A B = SUMM (SUMM (LMERQE A B) (LMERGE B A)) (COMM A B)

LMERGE_IX = F V A B a. LMEKGE (PREFIX a A) B z PREFIX a (COMPOSE k B)

LMERGE_DIST_AX =
V A B C. LMERGE (SUMMA B) C = SUMM (LMERGE A C) (LMERGE B C)

While HOL allows the embedding of other logics, the native HOL syntax must be used.

This makes CCS terms stated in HOL difficult to understand and awkward to use (as the

above theorems show). For example, even the fairly simple agent expression: (a.E+_.0)I(_.F)

will be output as (and must be input as):
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(COMPOSE (SUMM (PREFIX (EXTERNAL(T,'a')) E) (PREFIX)

(COMPOSE (SUMM (PREFIX (EXTERNAL(T,'a')) E)

(PREFIX (EXTERNAL(F,'b'))INACTIVE) )

(PREFIX (EXTERNAL(F,'a')) F) )

To reduce the difficulty in manipulating embedded languages, new library facilities are

available in HOL88 Version 2.0. The new library facilities include a "pretty printing" library

and a "pretty parser" library for the HOL theorem-proving system. The use of these tools

will be described below in sections 4.4 and 4.5.

4.3 TRANSITION SEMANTICS

Having defined the form of agents in the previous section, we define a relation between

two agents that captures the semantic definition of labeled transitions (e.g., A _ B ) This

relation can be defined using the inductive relation definition package.

The inductive relation definition package provides a set of theorem-proving tools based

on a newly derived principle of definition in HOL for defining relations inductively by a set of

rules (ref. 30). Rules consist of a list of premisses and side conditions and a conclusion. Each

premiss must make a positive assertion about membership in the relation. Side conditions

may be arbitrary propositions not involving the relation being defined (as an example, see the

TRANS_RES law definition below). The rules are essentially implications: if the premisses

and side conditions hold, then the conclusions hold. The relation is inductively defined by a

collection of such rules to be the least relation closed under all the rules.

The TRANS function defined below states that for an agent to evolve to another agent,

there must be an immediate transition by a prefixed action or a set of premisses must be

satisfied. To embody all the laws described in 3.1, symmetric forms are needed for summation

laws and the composition laws.
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let (TRZNS_rules0 TRANS_ind) =

lee TRAMS = "TRANS:a_en¢->action->agent->bool" in
nee_inductive_definition false 'TRAMS'

("'TRAMS x a y", D)
r

7' ACT LAW 7'

[3,
7'.............. 7'

"'TRAMS (PREFIX a y) a y"
;7' SU_I LAW 7.

[ "'TRAMS x a y" ],
7,.......... Z

"'TBAIS (SUMM x z) a y"
;7, SUM2 LAW 7,

[ "'TRAMS x a y" ],
7,- _.

"'TRAMS (SUMM z x) a y"
;7, COM1 LAW 7,

[ "'TITANS x a y" 3,
7,................ y,
"'T&6IS (COMPOSE x z) a (COMPOSE y z)"

;7, COM2LAW
[ "'TRAMS x a y" ].

"'TRAMS (COMPOSE z x) a (COMPOSE z y)"
;7, CON3 LAW 7,
[ "'TRAMS • (EXTEUAL (T,s)) x'";

"'TRAMS y (EXTERNAL (F,s)) y'" ],
7,. --7,
"'TRAMS (COMPOSE • y) INTERNAL (COMPOSE x' y')"

;7, RES LAW 7,

[ "'TITANS • a y";
"'( (LBL a) = (SMD (r:label)))" ],

7,..................... 7,
"'TRAMS (RESTRICT r x) a (RESTRICT r y) "

];;

let TRAIS_ACT ffi (el ! TRAIS_rules);;
let TRAMS_SUM1 : (el 2 TRAMS.rules);;
le_ TRAWS_SUM2 : (el 3 TRAMS_rules);;
lee TRAMS_COM1 = (el 4 TRAIS_rules);;
let TRA|S_COM2 = (el 5 TRA|S.rules);;
let TRAMS_CON3 = (el 6 TRAMS_rules);;

let TRAMS_RES = (el 7 TRAMS_rules);;

let TRAIS_I_DUCT_TAC = RULE_INDUCT_THEM TRAMS_And ASSUME_TAC ASSUME_TAC;;

lee TRAMS_CASES = derive_cases_tlm(TRAlS_rules,TRANS_ind);;

let TRA|S_ACT_EIISTS = nee_defini¢ion('TRANS_ACT_EXISTS',

"!P Q. TRAMS_ACT_EXISTS P Q = ?P' Q' a. (TRAMS P a P') /\ (TRAMS Q a Q')");;

Using the definition of TRANS, we can prove that agents can evolve to other agents

(e.g., ]iveness properties). The relation FBY, describes the transitive closure of the TRANS

relation.
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let (FBY_rules. FB¥__d) =

let FBY = "FBY:agent->agent->bool" in
nlw_inductive_definition false 'FBY'
("'FBY A B",D)
[[

Y.I

[

%2

"'FBY A A"

"TRAMS I a C";
"'FBY C B"

let FBY_REFL
let FBY_TRAIS

"'FBY A B"

= (el I FBY_rules);;
= (el 2 FBY_rules);;

Y.],

%],
];;

4.4 PRETTY PRINTING SUPPORT

A set of rules can be defined so that the CCS terms are presented in a form resembling their

form in the literature. Each rule consists of two parts, which are separated by the operator

->: a pattern and a format. Each pattern defines a context in which the rule is relevant and

a template that a HOL term much match for the rule to be fired. The template may also

contain optional type information. The format defines horizontal spacing parameters (e.g.,

where line breaks should appear) and how the HOL term should be printed. Frequently, this

information informs the pretty printer that a new context should be entered. For example,

the following rule will cause the pretty printer to to print the string tau for the internal

action constant INTERNAL.

'term' : :CONST(INTEP,NAL() ,**) -> [<h O> "tau"] ;

To activate a pretty printer specification, the follow HOL code must be executed. This

code redefines the HOL system print function (top_print) to first attempt to print terms us-

ing the ccs_rules and if they fail, to use the built-in rules. The variable assignable_print_term

must be reassigned so that the subgoals package also prints using the new rules.

top_print (\t. pp (¢cs_rules_funthen_try
hol_term_rulos_funthen_try
hol_type_rules_fun) 'term'

let ccs_term_print t =
pp (cos_rules_fun then_try

hol_term_rules_funthen_try

hot_type_rules_fun) 'term' []

assignable_print_term := ccs_term_print;;

(pp_convert_termt));;

(pp_convert_termt);;
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'lbls'::COMB(CONB(COIST(#'#(),**),*ch),COIST(#'#(),**))
-> [<h O> *ch ];

'Ibls'::VA_(*str,**) -> [<It O> "<" *sir ">"];

'lbls'::CO_ST(*str,**) -> [<h O> *str];

'lbls'::COMB(COMB(CO|ST(STRI|G(),**),Sch),*str)
-> [<h O> *ch 'ibls'::*str];

'lbl'::COMB(COMBCCOIST(#,#(),**),COIST(F(),**)),*str)
-> [<h O> ..... 'Ibls'::*s_r];

'IbI'::CONB(COMB(COIST(#,#(),**),COtST(T(),**)),*str)
-> [_h O> 'lbls'::*str];

'tera'::CONST(IITER_AL(),**) -> [<h O> "tau"];

'tera'::CONST(INACTIVE(),**) -> [<h O> "0"];

'tera'::COMB(COWST(EXTER_AL(),**),*labI1) -> [<h O> 'lbl'::*label];

'tera'::COMB(COMB(CONST(PREFII(),**),*ac_),*ag) -> [<h O> *act "." *ag];

'term'

'terl'

Dtex_m'

COMB(COMB(CO|ST(COHPOSE(),**),*agl),*ag2)
-> [<h o> "(" ,_z " II " *_2 ")" ];

COMB(COMB(COIST(LHERGEC),**),*agJ),*ag2)
-> [<h O> "(" *ag! " L " *ag2 ")" ];

::COMB(COMB(V.J_(COMM(),**),*agl),*ag2)
-> [<h O> "(" *agi "I" *ag2 ")" ];

JteX_'
_terl'

_t, orB _'

'term'

::COMB(CO_B(COIST(SUMM (),**),*agl),*ag2) -> [<h O> *agl "+" *ag2];
COMB(COMB(COIST(RESTKICT(),**),*Iset),*ag) -> [<h O> *ag "\" *iset];

COMB(C0MB(CO_ST(I_LABEL(),**),*ag),*rfun_
-> [<h O> *ag "[" *rf_ "]" ];

::COMB(COMB(CONB(COIST(TRA_S(),**),*agl),*ac_),*ag2)

-> [<h O> *agl " -<" *ac_ ">--> " *ag2 ];

F_gure 4.&l: Pretty Printer Rule Specification

4.5 PRETTY PARSING SUPPORT

A generic parser-generator is provided as a library in HOL88 Version 2.0. The input to

the generator is a form of modified BNF notation consisting of terminals, non-terminals,

and action symbols. The parser-generator can only accept a syntax for a non left-recursive

context-free grammer. Action symbols are embedded in the grammer to construct the in-

tended semantics for the syntax.

For pretty parsing to work, a set of ML functions are defined, which are activated when

the parser completes a grammer rule. These rules convert CCS terms into HOL terms.
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Figure 4.5-I: Pretty Parser Grammer Specification

FIRST_CHARS 'a b c d e f g h i j k 1 m n o p q r s t u v w x y z
AB CDEFGH I J KLMMOP QRSTUVWXYZ
_t

CHA_ 'abc d e f g h i j k lm n o p q r s t u v w x y z
AB CDEFGH I JKLMI OP 0RSTUVWIYZ
1234567890''

USEFUL[(',', '")3.

MAIN_LOOP --> term [EOF].

torn --> agent more_agent.

nore_agent --> agent_op more_agent l [].

agent --> [(] agent nore_agent D]
I [03 {mk_conet('IMACTIVE'. ":agent")}
J action prefix
[ {__var(TOKEN,":agent")}.

action --> IT] { mk_const('IMTERMAL',":action") }
I inlabel { _k_ccs_ac_ion(POP) }
J [-] outlabel { mk_cce_action(POP) }
J {Lk_var(TOKE_,":action")}.

prefix --> [.] {mk_ccs_act_comb('PREFIX',POP,agent)}.

agent_op --> [+] {mk_ccs_comb('SUMM',POP,agent)}
I [I] {mk_ccs_comb('COMPOSE',POP,agent)}
I [=] action [=] [>] {mk_ccs_trans(POP,POP,agent)}.

inlabel --> ['] { _k_ccs_label("T:bool", WORD) } ['].

outlabel --> ['] { mk_ccs_label("F:bool", WORD) } ['].

inactive --> [0] {=k_const('INACTIVE', ":agent")}.

let mk_cce_act_comb (op, a, b) = mkco|b(BJ{lCOmb(

mk_const(op,":actiono>agent->agent"),a), b);;

let mk_cce_comb (op, a, b) = mk_comb(mk_comb(
mk_const(op,":agent->agent->agent"),a), b);;

let _k_ccs_label( b, w )= _k_pair( b, _k_const('\'''u''\'',":string") );;

let __ccs_action( I ) = mk_comb( mk_const('EXTERJAL',":label->action"),l);;

let mk_ccs_trans (A, act, B) = mk_comb(mk_comb(mk_comb(
_k_const('TRANS',":agent->action->agent->bool")

,A), act), B);;

let SEPS = [('(',_);(')',D); ('.',L_);('-',[J);
('=',[3);('>',[3); ('+',f3);('T',[J)3;;

let parse thing = (PARSE__ext(thing,[_,SEPS));;

new_syntax_block('<<','>>','paree');;
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When the HOL term parser finds a new syntax block (as defined above), the parser

constructed is given the complete string within the syntax block (delimited by << and >>).

The parser is expected to return the corresponding HOL term.

The following example demonstrates such a proof and show the use of the pretty parser

and pretty printer.

let I = '('a'.E + -'b'.O) [ (-'a'.F)';;

let Y = '(E I F)';;
let T = (I''=T=>'" Y);;
let Z = (PARSE_text( T,_,SEPS));;

X = CCPaP

¥ = C(E I
T = '('a j
Z = "(tat

.g + -'b'.O) J (-'a'.F)' : string
F)' : string

.E + -'b'.O) ] (-'a'.F)=T=>(E I F)' : string

.E+-'b'.O II -'a'.F) -<tau>--> (EII F)" : term

sot_goal( [],"'Z");;

"('aC.E+-'b'.O II -'a'.F) -<tau>--> (EII F)"

() : void
Run time: 0.3s

e( RULE_TAC TItAWS_CON3
THE1 £XISTS_TAC "'a c''
THE! CONJ_TAC
THEWL [ RULE_TAC TRANS_SUM1 THEN KULE_TAC TKANS_ACT

; RULE_TAC TRA_S_ACT ]);;

0K.°

goal proved

I- 'I'P.AWS

(CONPOSE
(SUI_MCPP..EFZI(EXTERIfALCT,'a'))E)CPgEFIXCEXTEMALCF,Cb'))ZNAGTIVE))
(PREFIZCEXTERIALCF,'a'))F))

I_TERIAL
(CONPOSE E F)

Run tins: 0.1s

Intermediate theorems generated: 42

pp_thm (top_t_());;

"('a'.E÷-Cb'.O II -'a'.F) -<tau>--> (E II F)" : term
Run time: O.Os
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4.6 AGENT EQUIVALENCE

As described in section 3.0, several notions of equivalence between agents can be defined.

The kinds of models that the initial algebra satisfies will be determined by which notion of

equivalence is used. Trace semantics can be shown by defining the meaning of an agent as a

set of traces where a trace is a list of actions.

new_type_abbrev('trace c , ":action list");;

nee_type_abbrev ('traces', ":trace set*');;

let TR = new_recursive_definition false AGENT 'TR'
"(TR(I|ACTIVE) = {}:_races) /\

(TR(PREFIX a A) = { _ [ (HD t = a) /\ (TL _ IN (TR A)) } ) /\

(TR(SUMN A B) = ( t [ (t IN TR(A)) \/ (t IN (TR B)) } ) ";;

Trace semantics permit fairly broad equivalence classes to be constructed. We are

frequently interested in a narrower definition of equivalence where two agents are equivalent

if an external agent cannot distinguish between the visible behavior (traces) of the two

agents. When using the notion of strong equivalence, traces consist of both external and

internal actions. For our application, a weaker notion of observation equivalence where

internal actions cannot be detected by the external agent, is sufficient.

We are actually interested in a weaker form: one-way observation equivalence. Under

this definition, P implements Q's behavior if for every action at of Q, every a-derivative of

Q is one-way observation equivalent to some a-descendant of P.

For the remainder of the paper we will use the term observation equivalence to mean

one-way observation equivalence.

Observation equivalence can be defined in terms of an inductive relation definition.

Observation equivalence laws are defined for compound terms, which are constructed using

only the PREFIX or SUMM operators.
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let (OE_ruln, OE_ind) =
let Og = "og:agen_->agent->bool" in
new_inductive_definition false 'OE'
("'OE i S", [] )
[
[

.%],
"'OZ i A"

[ "'OE i B"

"'OE (PREFIX a A) (PREFIX a B)"

[

%3'

"'(TItA|S_ACT_EXISTS B C) /\
"OE A C"

%],

%3,

[

%41

"'0E (SUNM A B) C"

"'(TRAMS_ACT_EXISTS A C) /\
"OE B C"

g3,

C

7.s

C

%6'

"-oE {suHx ¢ B) c"

"'0E i c";
"'OE B C"

............................ %3,
"'OE (SUMM A B) C"

"'Og k B";
°"OE A C"

%3.

];;
"'OE A (SUMM B C)"

10_ 0E__EF = (el 1 og_rules);;
le¢ OE_PRE = (el 20E_rules);;
le_ OE_LSUML = (el 30E_rules);;
le_ OE_LSUMK = (el 40E_rulos);;
let OE_LSUM = (el 60E_rulos);;
let OE_RSUM = (el 60E_rules);;

let OE_IWDUCT_TAC = RULE_INDUCT_THE]i OE_ind ASSUME_TAC ASSUME_TAC;;

le_ OES_CASES = derive_cases_thm(OE_rules,OE_ind);;

Rules 1 and 2 are straightforward; observation equivalence is reflexive and two agents

prefixed with the same action are observation equivalent if the agents without the prefixed

action are observation equivalent.

If the left-haxtd-side agent is a summation of two agents (i.e. OE (SUMM A B) C )

rules 3-5 may apply, and one-way observation equivalence is achieved if either:
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a. Both of the summation agents (A and B) satisfy observation equivalence with the

right-hand-side agent (C). This is rule number 5, OE_LSUM.

b. The left summation agent (A) satisfies observation equivalence with the right-hand-side

agent (C) and there is no action for which a transition for both the right summation

agent (B) and the right-hand-side agent (C) exists. This is rule number 3, OE_LSUML.

c. The right summation agent (B) satisfies observation equivalence with the right-hand-

side agent (C) and there is no action for which a transition for both the left summation

agent (A) and the right-hand-side agent (C) exists. This is rule number 4, OE_LSUMR.

The last rule states that if the right-hand-side agent is a summation agent, then the

left-hand-side agent must satisfy observation equivalence for both of the right-hand-side

summation agents. This is the symmetric case of rule number 5 for a left-hand summation.

Note that symmetric rules for rules 3 and 4 do not exist. If they were present, the OE

relation would specify trace semantics. For example,

OE (a.0 + b.0)(b.0 + a.0)

requires both:

OE (a.0 + b.0)(a.0)

OE (a.0 + b.0)(b.0)

Adding the symmetric rules would allow relations such as

OE (b.0) (a.0 + b.0)

to be true. If the semantic meaning of the OE relation is read as "implements", then

(a.0 + b.0)implements (a.0)

but (a.0) does not satisfy/implement (a.0 + b.0)

4.6.1 EQUIVALENCE PROOFS

Based on the above definitions of actions, agents, transitions, and equivalence, many of the

CCS axioms can be proved. For example, in the box below, we show the proof script for

the summation law: P + 0 = P
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le_ SUM_IWACTIVE = prove_tlm('SUM_IMACTIVE _ ,
"!P:agen_. OE (SUMM P IHACTIVE) P",

GEM_TAC

THE| _ULE_TAC OE_LSUML
THEWL [ REWI_TTE_TAC [TP_WS_ACT.EXISTS]

THEM COmV_TIC |OT_EIZSTS_COHV THEM GEH_TAC
THE| COHV_TAC |OT_EXISTS_COMV THEN GEH_TAC
THEM COWV_TAC HOT_EIISTS_COMV
THEM REWRITE_TAC [DE_M0_GAM_THM]

THEM GEH_TAC
THEH DISJI_TAC
THEM MP_TAC ( SPECL ["IMACTlVE";"a:action"; "P'"] TRAMS_CASES )
THEH P_EWRITE_TAC [AGEMT_COMSTRUCTOILS_DISTIMCT ]

ItULE_TAC OE_REF

] );;

4.7 EXTENSIONS

For our purposes, neither the recursive operator nor the relabel operator have been necessary.

However, work is currently underway to add a repeat operator to the type definition. This

operator is available in the lr calculus developed by Melham (ref. 27). The relabel operator

would be easy to add if warranted by further application of the c_lculus.
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5.0 MECHANIZATION OF DEVICE INTERACTIONS

5.1 GENERIC INTERACTIONS

In this section, we will show how the process algebra formalism developed in section 4.0

can be used to specify various types of device interactions. Device communication may

require only a single message or a series of messages to be passed between two devices. At

a lower level, the information is passed over a bus using a hardware protocol (e.g., 4-phase

handshaking).

The types of interactions can be loosely described as belonging to one of the following

categories:

a. Remote Procedure Call,

b. Message Passing,

c. Process Creation (fork), and

d. Rendezvous.

These forms of interaction are described in concurrent programming literature. While

the Ads programming language provides primitive support for only remote-procedure-call

and rendezvous features, the SR programming language provides primitive statements for

each of the above interaction forms.

5.1.1 REMOTE PROCEDURE CALL

A CPU and a memory subsystem interact in a remote-procedure-call manner. The CPU

sends a memory request to the subsystem and waits for a response. If the memory subsystem

includes a memory management unit (MMU), the MMU and the actual memory may also

interact in a remote procedure form.

In the example below, we show a proof of a 4-phase handshaking protocol between a

CPU and a bus. This example is somewhat simplified as the bus returns a data value rather

than actually reading a memory location.
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let cpultaiseKead = '
let cpuReadMen ffi _

le_ cpuDropRead = '
let cpuKeadConplete = '

-'cpu_addr'.-'cpu.rKeq _ ';;
• 'data£vail'.'data s _;;

• -'cpu_addr'.-'cpu_rReq' ';;
• SUCCESS ",;

let busGe_goad = '
let busge_urnNen = '

lee busDropRead = ,
let busReadConplete = ,

'cpu_addr'.'cpu_rRsq' t;;
. -*data£vail_.°'data '

• _cpu_addx'.'cpu_rKeq' ';;
• SUCCESS ';;

_;;

let cpuRead = cpuRaiseRead'cpuReadNem'cpuDropRead'cpuReadCompleto;;

le_ busRoad = busGetEead'busKe_urnMem'busDropEead'busKeadComple_e;;

let system_def = "(''cpuRead'')J(''busRead'')';;

let systen = Igent sys_em_dsf;;

let system_done = ' SUCCESS J SUCCESS ';;
le_ success = Agsn_ sysSen_done;;

5.1.2 MESSAGE PASSING

Devices also interact through a message-passing format. For example, consider the inter-

action between a CPU and an interrupt controller. These devices operate simultaneously,

performing independent tasks, and may never interact (this is, of course, unlikely). If an

enabled I/O device generates an interrupt, the system's interrupt controller will send a mes-

sage to the CPU indicating that some device requires attention. At this point the CPU

may or may not respond. Depending on the signaling discipline (e.g., signal-and-continue or

signal-and-wait ), the interrupt controller may also continue to operate.

Another example of the message passing form is the instruction-buffer management

interaction between an 8088 CPU and its floating-point-instruction coprocessor (FPC), the

8087 (ref. 31). The CPU and FPC both maintain an instruction prefetch buffer• Instead

of both devices duplicating all the instruction decode logic, the CPU sends messages to the

FPC indicating how each byte should be interpreted (e.g., remove first byte, interpret byte

as FPC instruction, flush the buffer, no change).

The example below shows how the interaction between a CPU and a PIC can be

modeled.
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let cpuInt = ' 'in_Pending'.CPU_PROCESS_INT';;
let cpuIntEnabled = cpuInt" '+ tau.FETCH_IWSTRUCTION';;

let cpuIntDisabled = ' FETCH_INSTRUCTION ';;

let picInt
let picReq
let pic|oReq

= ' -'intPending'.PlC_PROCESS_INT ';;

= picInt" ' + tau•PIC_CHECK ';;
= ' PIC_CHECK ';;

let sys_em_def = '(''pic'')[(''cpu'')';;

5.1.3 PROCESS CREATION AND RENDEZVOUS

The interaction between a CPU and a Direct Memory Access device (DMA), can be char-

acterized as process creation followed by a rendezvous. A DMA must be programmed to

supervise the transfer of data from an I/O device to memory. The process of initializing

and activating the DMA is a form of process creation• When the DMA has completed

its task, the CPU (probably through the interrupt controller) will be signaled• In many

circumstances, the CPU activity must rendezvous with the completion of the DMA activ-

ity. For example, when a new code page must be brought into memory for an executing

program to continue, the CPU may switch to other executing programs, but once all other

programs have completed, the CPU (really the OS kernel) must wait for the DMA activity

to complete.

let dmaProcCreate = ' cpuWriteKeg.cpuInitExec.DMA_EXEC';;

lot dmaSleep = dmaProcCreate;;
let dmaDone = ' -'dmaInt'.dmaSleep ';;
let dma = dmaSleep;;

let cpuDMACreate
le_ cpuDMAWai_

= ' -'cpuWriteReg'•-'cpuInitExe¢';;
= , ,dmaint_.cpuContinue ',,

Another example of rendezvous exists where a FPU must rely on the CPU for stores to

and fetches from memory. Given an interleaved instruction stream, simultaneous execution

by the two devices can occur; however, a rendezvous exists when results from one are needed

by the other device.

5.2 AVM-1 /MMU CONNECTION SPECIFICATION

This section will describe the specification of a system consisting of the AVM-1

cessor and the MMU device verified in previous work (refs. 2 and 1).

micropro-
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5.2.1 AVM-1

The AVM-1 processor is described in detail in (ref. 14) and will only briefly be described

here. AVM-1 was designed to demonstrate the use of generic interpreters in verifying hier-

archically decomposed microprocessor specifications.

The design was motivated by the desire to provide hardware features that were not

present in previous microprocessor verification efforts and would support a realistic operating

system. In addition to vectored interrupts, AVM-1 supports a supervisor mode. AVM-1

has a load-store architecture based on a register file consisting of:

a. Register 0, which is read-only and contains the constant 0.

b. Seven supervisor-mode registers including a supervisor stack pointer. These registers

are read-only unless the CPU is in supervisor-mode.

c. Twenty-four general purpose registers.

A program status word register maintains the status of the last ALU operation, whether in-

terrupts are enabled, and the privilege level of the currently executing process. The program

counter is also visible at the assembly language programmer level.

The instruction set contains 30 instructions and is similar to that of RISC I. For

example the MOVE instruction is synthesized using an ALU operation. The instruction

set is designed to support coprocessors. Six bits are reserved for the opcode. If the top

opcode bit is high, the processor assumes the instruction is intended for a coprocessor.

5.2.2 ABSTRACT MMU

A description of a number of memory management units which form a complexity hierarchy

appears in (ref. 2). By developing a sophisticated MMU in steps, the construction of the

final proof appears to be more tractable. The simpler devices validate access to fixed length

memory pages while the more complex devices authorize read, write or execute access to

variable length segments and translate virtual addresses to real addresses. Many of these

devices were designed and verified to the gate-level. However, as the complexity increases,
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the emphasis of the verification shifts from gate level connections to the correctness of the

operating-system support features.

The abstract MMU validates memory requests based on information maintained in a

memory-resident segment descriptor table. The location of the table is determined by a

segment-table pointer register, which is accessible only during supervisor operations. Each

descriptor consists of two words: the first contains access control information (present bit,

read/write/execute permissions, segment size) and the second serves as the base address for

the segment's real location in memory. To translate from a virtual address to a real address,

the MMU adds the segment offset to the segment base address. The MMU assumes the

table provides an entry for all possible segment descriptors.

virtual address

data

read/write/exec

supervisor mode

-Iw Segment Table Pointer real address
w

acknowledgement

Figure 5.2-1: Abstract MMU Environment/State

The abstract MMU representation generalizes traits particular to concrete implemen-

tations. A generic theory for a class of MMU devices is defined where several functions

and data types are left abstract. Using an abstract representation, details such as word

length can be omitted and the verification focuses only on the correctness of higher level

abstraction (e.g., electronic block level rather than gate level). Other properties such as the

exact security policy and division of a virtual address into a segment identifier and offset

are left unspecified. At a later point, the abstract representation can be instantiated with

components that implement concrete behavior.
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5.2.3 CPU MMU INTERACTION

CPU

bus control

< >

address
bus

MMU

function

>
physical

address
bus

< d tabus >

MEMORY

To determine how the CPU and MM U interact, we examine the external interface of AVM- 1

with memory and the interface that the MMU provides to the CPU. Below we show the

AVM-1 memory interface specification. If a write request is made at time t the memory

will reflect this request at time t + 1, otherwise, the memory will remain unmodified. If a

read request is made at time t then the data value returned is a function of the memory

contents at time t.

let 14Elq = new_definition

('M_',
"! (rep:'rep_ty) wr_s rd_s addr data mem.

MEM rep ur_s rd_s addr data nero =
:t :t_e .

(men (t+l) =
(wr_s t => 8toro top (morn t, addroms top (addr t), (data t))

I me,.t)) /\
(rd_s t ==> (data t = (fetch tel0 (men t, address rep (addrt)))))"

);;

This specification is incomplete for the purposes of connecting the CPU with the MMU.

There is no external line to indicate the security status of an executing process (e.g., the
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supervisor line); nor is there a return code indicating whether the memory request was

validated. Additionally, the specification assumes that memory operations occur in a single

cycle. This last consideration could be dealt with by an appropriate temporal abstraction.

Below is a modified specification that includes these features. A security line is added

to the specification and an acknowledgment variable (ack) is added to inform the CPU of

invalid memory requests. This variable is set based on a new abstract function me_gt. The

abstract CPU functions, store and fetch, now expect the supervisor state as an additional

argument (auperV). These functions should not perform as requested when security/safety

requirements are not satisfied.

let MEM = new_definition
( 'NEN',

"! (rep:'rep__y) vr_s rd_s addr data mere superV ack.
MEM rep wr_s rd_s addr data mere 8uperV ack =
!t :time .

(men ('c+l) =
(wr_s t =>

s_ore rep (mere t. address rep (addr t). (dal;a t). superV I;)

J men t)) /\
(rd_s I; ==> (data t=(fetch rep (mere t. address rep (addr t).superV I;)))) /\

(ack t = menJ(gt rep (morn I;. address rep (addr _).data 1;.superV t.,r_s I;))"

);;

With these additions, the process algebra term for this interface can be defined as below.

cpu_write_req u est = (userMode + r. superMode), write, address, data. (ack + hack )

cpu_read_req uest = ( userMode + r. superMode), read. address. ( ack + ,ack ). data)

CPUtoMEM = cpu_write_request + T.cpu_read_request

CPU = CPUtoMEM.CPU

These terms are abbreviations for their actual representations in HOL. The PREFIX

operator is defined to construct an agent from an action and an agent rather than from two

agents as presented here.

Note the use of the internal operator to indicate that at given points, the CPU will

behave in one of two ways: communicate through the userMode action or through the

superMode action. This choice is made internally by the CPU. Without this use of r, the

terms would mean that communication could occur by either action, depending on what an

external agent might choose. This use of the r action can also be seen in the process algebra
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terms for the MMU below.

The MMU specification is in several parts as listed below.

kdd legalAccess r vAddr tbiPtr rwe mem =
let a = (fetch r)(mea,(Lddress r)((add r) (segIdshf r vAddr,tblPtr))) in
((val_dAccess r) (vaddr,a,ree) A (o_sLEq r) (vAddr.a))

_dd vTog r vAddr tblPtr mem =
let a = (leech r) (hem, (address r) ((add r)( (wordn r 1),

(add r)(segldshf r vAddr,tblPtr) ))) in
(address r) ((add r) (segOfs r vAddr, a))

_dd superMode r vAddr rws tblPCrADDR CblP_r data mem =
((wBIT rwe) A (addrEq r (vAddr,tblPtrAVDR)))

--. ( T, vAddr, data) [ ( T, vAddr, tblPtr )

Fad userMode r vAddr tee tblPCrADDR tbiPtr data mem =
legalAccess r vAddr _blPtr rwe lem

--. ( T, (vToR r vAddr tblPCr mem), tblPtr )
[ ( F. vAddr, tblPtr )

kdd mmu_spec r vAddr rwe tblP_rADD_ tblP_r data mem superv :
superv --* superMode r vAddr rwe CblP_r&DDR tbiPtr da_a mem

] userMode r vAddr zwe tblP_rADVR tblPtr data mea

To express the notion that the MMU performs some work before responding, the r

action is inserted before the response is returned. Part of this action may be to update the

segment-table pointer value. While the system is able to accept either a userMode or a super-

Mode communication, the MMU chooses to respond with only a-_ or _ communication.

The MMU specification also states when the MMU segment-table pointer is updated. This

action is not relevant to the CPU -MMU interface, so it is expressed as an internal (r)

action. This specification yields the process algebra terms:

m mu_process_write = (userMode + superMode), write, address, data.7".(-a_ck + 7".nack)

m m u_process_read = ( userMode + superMode). Tea d. address.r. (a-'_:c+ r. n-'_kck), data

MMUtoCPU = mmu_process_write + mmu_process_read

MMU = MMUtoCPU.MMU

System = CPU I MMU
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5.3 PROOF OF CORRECT COMPOSITION

The agents CPU and MMU are recursively defined and exhibit an infinite behavior. To show

that the composed CPU and MMU communicate correctly, we must show that the system

is always able to return to its initial state. It is also necessary to show that progress is made

when the CPU initiates a dialogue with the MMU. The proof goal then can be stated as:

a. If either of the CPU actions, userMode or superMode, are enabled, the memory sub-

system will engage in communication.

b. The communication protocol will complete and the system returns to its initial state.

To formalize and prove this goal in HOL, agent terms are defined based on the process

algebra terms described in section 5.2.3. To reason about the finite protocol communication

sequences, the recursive behavior of the agents is removed. The recursive agent reference is

replaced with an (undefined) agent constant SUCCESS.

In the box below, we show the construction of the MMU process algebra term 2. The

CPU term is defined in a similar manner. The term is constructed in parts by building up

an ML string. The ML function .t,gen_ parses the ML string and returns a HOL agent

term. ML strings are delimited by backquotes (') and the string concatenation operator is

the caret symbol (A).

let MUW =

' ('grite'.'addr'.'data'.((-'ack'.SUCCESS)+(T.-Jnack'.SUCCESS)))';;

lot mur =

' ('rsad'.Jaddr'.((-'ack'.'data'.SUCCESS)÷(T.-'nack'.'data'.SUCCESS)))';;

let meg =

' ('grite'.*addr'.'data'.((-'ack'.SUCCESS)+(T.-'nack'.SUCCESS)))';;

let msr =

' ('readJ.'addr'.((-'ack'.'data'.SUCCESS)+(T.-'nack'.'data'.SUCCESS)))';;

let user_nmu = '( 'user' .('" muw "'+" mur "'))';;

let super_mmu = '( 'super' .('' nsw "'+'' msr "'))';;

let nmu = '('' user_mmu "'+'' super_mmu '')''',,

let MMU = Agent mmu;;

_As with many such definitions, it is perhaps easier to read the code from the bottom upwards. This

gives the reader a top-down viewpoint.
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To express the goal in a general form, several auxiliary definitions are defined.

a. A recursive definition (ENABLED) is defined to construct a list of all output actions

that an agent can perform.

b. A new relation FLUX states that two composed systems are members of the re-

lation only if a sequence of internal actions can be found to relate the first to the

second. FLUX is similar to TRANS except that the laws TRANS_COM1 and

TRANS_COM2 are not present.

c. A goal predicate definition BECOMES is defined. The predicate states that for all

possible enabled output actions, a complement action exists such that a success agent

is reached immediately or reached in a descendent.

ls_ ENABLED = nee_recursive_definition false AGENT 'EIABLED'
"(E|ABLED(IMACTIVE) = Q) /\
(ENABLED(PREFIX a A) = ((INTERNALfa) => ENABLED A l

(( (TYP a) ffi F) ffi> [a] I D )11 /\

(ENABLED(SUMM A B) ffiAPPEND (ENABLED A) (ENIBLED B)) /\

(ENABLED(COMPOSE I B) = APPEND (ENABLED A) (ENABLED B) I'°;;

leC (FLUX_rules, FLUl_ind) = let

ne__inductive_definition false 'FLUX' ("'FLUX x a y", _1
% ,tea' LAW %

[],
% %

"'FLUX (PREFIX a y) a y"
;% SUML LAW %

[ "'FLUX x a y"
7'- 7.

"'FLUX (SUMM x z) a y"
;7. SUMR LAW 7'

[ "-FLUX x a y" ],
7'. %

"'FLUX (SUMM z x) a y"

;7' con LAW7'
[ "'FLUX • (EXTERNAL (T,s)) x'";

"'FLUX y (EXTERNAL (F,s)) y'" ],
7. 7.

"'FLUX (COMPOSE • y) INTERNAL (COMPOSE x' y')"
;7' _ES LAW7'

t "' ux • a--a)Y";"'( (LBL (SWD (r:labal)))" ],

7. ................7.
"'FLUX (RESTRICT r x) a (RESTRICT r y) "

;7'TRANSITIVE LAW 7'
[ "'FLUX A a C";

"'FLUX C a B"
7' .7' ],

"'FLUX A a B" "1; ;

FLUX ffi "FLUX:agent->action->agent->bool" in
[

let BECOMES • nn_dsfinition('BECOMES',

"!(system success :agent). BECOMES system success =
(EVERY (\x. (FLUX system • successl) (ENABLED sys) )");;
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The success agent for the composed MMU-CPU is SUCCESS I SUCCESS. By un-

winding the agent definitions and using the FLUX laws, all possible paths are found to reach

the success agent through internal transitions. The MMU-CPU composed communication

proof shows that:

F BECOMES (CPU I M_J) (SUCCESS I SUCCESS) ]

5.3.1 SYSTEM SPECIFICATION WITH A DMA DEVICE

The DMA we present is based on the device verified in (ref. 32), which provides four channels

between memory and I/O devices. The behavior of each channel is determined by a set of

registers. For present purposes, we will consider a DMA with a single write-to-memory

channel. The register set for a channel consists of:

a. A counter register, which, when reaching zero, interrupts the CPU to indicate the

channel has completed its task.

b. A memory address counter, which must be initialized to the base address in memory

for the block transfer. After each I/0 transfer, this register is incremented.

c. A control/status register, set by the CPU to activate a channel and unset by the DMA

when the channel has completed its task.

Two system configurations are possible. The DMA could reside between the CPU and

the MMU or between the MMU and memory. The proposed system places the DMA before

the MMU (see Figure 5.3-1 ). Thus, DMA writes to memory are validated by the MMU.

The DMA will respond to three events: a read DMA register request, a write DMA

register request, and an I/O device service request (once enabled). An I/O device service

request requires that a value be written to memory and that when the channel counter

reaches zero, the CPU be interrupted. Below we present the process algebra terms for this

behavior. A more complete CPU agent is also defined to accept interrupts from the DMA.

writeReg = write.address.data
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CPU MMU

DMA

Memo_

Figure 5.3-I: CPU/MMU/DMA System

read Reg = read. address, data

activelO = writeReg.DMA + readReg.DMA+

( iolnt.superMode.write.address.data.(ack + nack ).(DMA + r.cp--"_-_.DiA)

DMA = writeReg + readReg + r.activelO

CPU = (CPUtoMEM + r.cpulnt).CPU

System = CPU I MMU I DMA
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6.0 CONCLUSIONS

We have presented a framework to formally verify the correctness of communication

between composed devices. Previous system verification research has developed vertically

verified systems. However, the hardware bases for these systems have been simplistic. Our

research is developing a framework to verify a more realistic horizontally verified system. This

work demonstrates that CCS is a good choice for describing interdevice implementation-level

connections within a computer system. Additional research will expand the calculus and ad-

dress automating the derivation of process algebra expressions from interpreter specifications.

Several improvements are being investigated, including:

a. An additional type constructor for recursive agents. This constructor will be necessary

to show the equivalence of infinite agents.

b. Extending the calculus so that reasoning about the higher-level semantics of composed

agents can be performed.

c. Greater proof support. Many of the proofs performed appear fairly easy to understand

outside of the formal model. As with most formal proofs, many details that appear

trivial require a fair amount of work to verify. The pretty-parser and pretty-printer

support are helpful; however, due to the underlying representation for agents, large

terms must be manipulated by hand. The automation of more of the tedious aspects

of the proof will allow formal reasoning about much larger examples to take place.

d. Several extensions to the calculus are being examined, including the addition of a data

field to all actions. With this addition, conditional operator constructs could be formed

(e.g., if (val > 5) then Agent = A else Agent = B). The addition of a labeled r

action might also help in understanding the semantics of an agent.
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